CONTEST \#2.

SOLUTIONS

2-1. 24 Substitute $x=1$ to obtain $y \leq 12$, so there are 12 ordered pairs with $x=1$. Similarly, there are 8 ordered pairs with $x=2$ and 4 with $x=3$, and no others with positive coordinates. The answer is $12+8+4=\mathbf{2 4}$.

2-2. 43 The only units digits whose sixth powers end in 9 are 3 and 7 . Note that $40^{6}=4,096,000,000$ and $50^{6}=15,625,000,000$, so $40<N<50$, and since N^{6} is closer to 40^{6} than $50^{6}, N$ must be 43 . To check the answer, consider that 43^{2} ends in $49.49^{2}=43^{4}$ ends in 01 . Therefore, $49^{3}=43^{6}$ ends in 49 , as needed.

2-3. (10,5) Suppose the four vertices of $S Q U A$ are $S(7,1), Q(3,4), U(6,8)$, and $A(x, y)$. Then, because U is the image of Q after a translation along the vector $\langle 3,4\rangle, A$ must be the image of S after a translation along the same vector, so A has coordinates $(7+3,1+4)=(\mathbf{1 0}, \mathbf{5})$.

2-4. $\sqrt{\mathbf{3 4}}$ The base has side length $24 \div 4=6 \mathrm{~cm}$. The volume is $60=\frac{1}{3}\left(6^{2}\right)(h) \rightarrow h=5 \mathrm{~cm}$. The height H of the isosceles triangular side is the hypotenuse of a right triangle whose legs are $h=5$ and $6 \div 2=3$, so $H=\sqrt{3^{2}+5^{2}}=\sqrt{\mathbf{3 4}}$.

2-5. 28 Let the number of students in the class be N; then $N(N-1) / 2-(N-4)(N-5) / 2=102 \rightarrow N^{2}-N-\left(N^{2}-9 N+20\right)=204$, which solves to obtain $8 N-20=204 \rightarrow N=\mathbf{2 8}$.

2-6. -16 Recall that $(A+B)^{4}=A^{4}+4 A^{3} B+6 A^{2} B^{2}+4 A B^{3}+B^{4}$. Therefore, $(A-B)^{4}+(A+B)^{4}=\left(A^{4}-4 A^{3} B+6 A^{2} B^{2}-4 A B^{3}+B^{4}\right)+\left(A^{4}+4 A^{3} B+6 A^{2} B^{2}+4 A B^{3}+B^{4}\right)$, or $2 A^{4}+12 A^{2} B^{2}+2 B^{4}$. Substituting $A=\sqrt{3}$ and $B=i$, the desired value is $2 \cdot 3^{2}+12 \cdot 3 \cdot-1+2 \cdot 1=18-36+2$, or $-\mathbf{1 6}$.

T-1. Sammy and Tammy go out for a one-hour jog. Sammy alternates between running for 5 minutes at 6 miles per hour and then walking for 1 minute at 2 miles per hour. Tammy runs at a constant pace of M miles per hour. Sammy and Tammy finish their jog at the same time.
Compute M.
T-1Sol. $\frac{\mathbf{1 6}}{\mathbf{3}}$ Convert to one-hour, so that Sammy runs for $\frac{5}{6} \cdot 60=50$ minutes and walks for 10 minutes. Running for 50 minutes at 6 miles per hour converts to a distance of $\frac{5}{6} \cdot 6=5$ miles. Similarly, Sammy walks for $\frac{1}{6} \cdot 2=\frac{1}{3}$ mile in the hour. The value of M is $5+\frac{1}{3}=\frac{\mathbf{1 6}}{\mathbf{3}}$.

T-2. Compute the value of the greatest integer N such that 7^{N} divides 2015!.
T-2Sol. 333 There is one factor of 7 in 2015 ! for each of $7,14,21, \ldots, 7 \cdot 287=2009$. There is an additional factor of 7 in 2015 ! for each of $49,98, \ldots, 49 \cdot 41=2009$. There is an additional factor of 7 in 2015 ! for each of $343,686, \ldots, 343 \cdot 5=1715$. The value of N is $287+41+5=\mathbf{3 3 3}$.

T-3. Let $f(x)=x^{3}-6 x^{2}+8 x-5$. If $f(x)$ can also be expressed $f(x)=(x-2)^{3}+b(x-2)^{2}+c(x-2)+d$, compute the ordered triple (b, c, d).
T-3Sol. $(\mathbf{0},-\mathbf{4},-\mathbf{5})$ Let $u=x-2$. Then
$f(u)=u^{3}+b u^{2}+c u+d=(u+2)^{3}-6(u+2)^{2}+8(u+2)-5$, or
$u^{3}+6 u^{2}+12 u+8-6 u^{2}-24 u-24+8 u+16-5$, so $b=0, c=-4$, and $d=-5$. The ordered triple is $(\mathbf{0},-\mathbf{4},-\mathbf{5})$.

